

Mainstreaming Disaster Risk Management to Sustain Local Road Infrastructure

Thomas Bles, Deltares

Objectives and activities

- Main objectives
 - Increase capacity and knowledge of local government in dealing with natural hazards affecting the local transport infrastructure
- Main activities
 - Perform a risk assessment on natural hazards affecting the road network in the province of Nueva Ecija
 - Prioritization of corrective investments
 - Using 'Decision Making under Deep Uncertainty'

Deltares

Frameworks and definitions

Decision Support: Risk Evaluation and Prioritization of Actions

Results

Set of maps

- Hazard
- Exposure
- Vulnerability
- Losses
- Prioritization

Prioritization of risk

		EADa	m	EALoss	Total (EAD+EAL)	
				(Million P	esos)	
	Floods	534		110.6	644.6 🔺	
Earthquakes		s 5.8	-	1.0	6.8 🖊	
			E	xpected Ani an Floods (MPesos)	nual Costs - EAD d EAL Earthquakes (KPesos)	
		C1		< 1.70	< 23	
		C2	1	.70 to 4.50	23 to 40	
	teg	C3	4	.50 to 6.50	40 to 60	
C4 C5		C4	6	6.50 to 8.40	60 to 85	
			> 8.40	> 85		

ARCHA CORPORT

EAD + EAL \rightarrow prioritization

THE WORLD BANK

Adaptive strategy Building for local roads

11

Decision making under (deep) uncertainty

Adaptation pathways illustrate different possible sequences of investment decisions.

MCA scorecard can be used to evaluate the pathways and potential decisions.

Costs and benefits of pathways

* single action or portfolio of actions

Haasnoot et al. (2012). Clim. Change.; Haasnoot et al. (2013) Glob. Env. Change. 10.1016/j.gloenvcha.2012.12.006

Decision Making under Deep Uncertainty

Performance of actions

Robust solutions -c effective under various, acceptable ossible future B cenarios) Anacceptable Flexible solutions ability to switch to other measures avoiding lockcurrent ins) policy changing conditions Adaptation Tipping Points

Conditions at which a policy begins to perform unacceptably

THE WORLD BANK

Retention Basin or Flow Diversion Install upstream weirs Erosion protection Submersible road Elevate road +2m Elevate road +1.5m Elevate road +1.5m Elevate road +0.5m Current Situation

Traffic management (re-routing)

Increase response and recovery capacity

ncrease redunancy

High CC, High Traffic

Low CC, Low Traffic

Map generated with Pathways Generator, ©2015, Deltares, Carthago Consultancy

- Semi-quantitative assessment
- Analysis performed for series of generic key archetypes, assessing relevant measures for each

Hazard	Characteristics			
		Bridges		
Flooding	Perpendicular Flow	Culverts		
Flooding		No drainage		
	Parallel Flow			
Londolidoo	Rockfall			
Landslides	Mud/Debris flow			
Earthquakes	-			

• Semi-quantitative assessment

THE WORLD BANK

- Analysis performed for series of generic key archetypes, assessing relevant measures for each
- Impact of **uncertainties** estimated for entire roads system; extrapolated to archetypes

Future Traffic: GDP*Elasticity

Climate Change: ∆RP

Change in Damages (PHP millions)

	Current	2050	2100
Flooding (LOW CC)	534	535	537
Flooding (HIGH CC)	534	740 (139%)	1116 (209%)
Earthquake	5.8	5.8	5.8

Change in Losses (PHP millions)

		2050			
	Current	Low Traffic	High Traffic		
Flooding (LOW CC)	111	352 (317%)	407 (367%)		
Flooding (HIGH CC)	111	484 (436%)	560 (505%)		
Earthquake	0.89	2.86 (321%)	3.31 (372%)		

Losses (PHP millions)

- Semi-quantitative assessment
- Analysis performed for series of generic key archetypes, assessing relevant measures for each
- Impact of **uncertainties** estimated for entire roads system; extrapolated to archetypes
- Measures assessment based on relative scoring of effectiveness of measures

Measures identification

GFDRR Cod Letty for factory for factory for the WORLD BANK IRD - IDA I WORLD BANK IRD - IDA I WORLD BANK OF DRAW

- Semi-quantitative assessment
- Analysis performed for series of generic key archetypes, assessing relevant measures for each
- Impact of **uncertainties** estimated for entire roads system; extrapolated to archetypes
- Measures assessment based on relative scoring of effectiveness of measures

Measure	Risk reduction in Damages (D) or Losses (L)	Efficacy (Risk reduction, %)
Retention Basin or Flow Diversion	D,L	100%
Elevate roads (with culverts/bridge/causeway/ford)	D,L	80%
Submersible road (inc. erosion protection)	D	60%
Install upstream weirs to decrease flow velocity	D	40%
Erosion protection (vegetation, synthetics, gabions, concrete, etc.)	D,(L)	60%
Traffic management (re-routing)	L	20%
Increase response and recovery capacity (inc. crews, materials, equipment)	L	35%
Increase redundancy (improve barangay roads)	L	80%

- Semi-quantitative assessment
- Analysis performed for series of generic key archetypes, assessing relevant measures for each
- Impact of **uncertainties** estimated for entire roads system; extrapolated to archetypes
- Measures assessment based on relative scoring of effectiveness of measures
- Robustness score for future performance in different scenarios established via maximin analysis

1: Extreme risk	
2: Increased risk to present	
3: Same risk as present	
4: Decreased risk to present	
5: Negligible risk	

	Performance in 2050					
Maagura	High	n CC	Low CC			
	High Traf	Low Traf	High Traf	Low Traf	Robu stnes s	
Current Situation (no measures)						
Retention Basin or Flow Diversion	1.00	1.00	1.00	1.00	1.00	
Elevate roads (with culverts/bridge/causeway/ford)	0.80	0.80	1.00	1.00	0.90	
Submersible road (inc. erosion protection)	0.20	0.40	0.40	0.40	0.35	
Install upstream weirs to decrease flow velocity	0.20	0.40	0.40	0.40	0.35	
Erosion protection	0.20	0.40	0.60	0.80	0.50	
Traffic management (re-routing)	0.20	0.40	0.40	0.40	0.35	
Increase response and recovery capacity	0.20	0.40	0.40	0.40	0.35	
Increase redundancy (improve barangay road(s))	0.80	1.00	1.00	1.00	0.95	

Criterion	Cost	Efficacy	Robustness	Flexibility	lexibility Implem- entation Maint	Maintenance	TOTAL
Weighting	40%	30%	5%	5%	15%	5%	
Retention Basin or Flow Diversion	1	10	10	8	1	4	4.7
Elevate roads (with culverts/ bridge/ causeway)	3	8	9	6	4	7	6.9
Submersible road (inc. erosion protection)	6	6	4	8	7	8	6.6
Install upstream weirs to decrease flow velocity	4	4	4	7	6	8	4.6
Erosion protection (vegetation, synthetics, gabions, concrete, etc.)	5	6	5	9	8	8	6.1
Traffic management (re-routing)	10	2	4	10	9	10	7.1
Increase response and recovery capacity	8	3.5	4	10	8	8	6.5
Increase redundancy (improve barangay roads)	1	8	10	8	2	5	4.2

 Measures ultimately assessed/prioritized using weighted MCA

- Semi-quantitative assessment
- Analysis performed for series of generic key archetypes, assessing relevant measures for each
- Impact of **uncertainties** estimated for entire roads system; extrapolated to archetypes
- Measures assessment based on relative scoring of effectiveness of measures
- Robustness score for different measures in different scenarios established via maximin analysis
- Measures ultimately assessed/prioritized
 using weighted MCA
- Relative **adaptation pathways** subsequently developed to consider decision-making in time

ATP

Short-term actions	Mid-term options	Long-term options

Concluding remarks

- DMU approach can be applied by provincial planners
- Large uncertainties towards future; flexible road planning is key
- Losses likely to become significant with regards to road planning
- Archetypes present generic prioritization of measures
- Detailing and specification for specific roads necessary
- Stakeholder preferences important to consider

THOMAS BLES

PROGRAMME MANAGER RESILIENT INFRASTRUCTURE

Tel: 0031 (0)6 1173 4843 Email: Thomas.Bles@deltares.nl Website: www.deltares.nl www.linkedin.com/in/thomas-bles/

