Deltares

Steps to action perspective Mike Woning

November 2021

Overview

- Required input what happened previously
- Why to take measures what do we want to achieve?
- Prioritizing locations where to start?
- Identification of measures which solutions theoretically fit?
- Selecting suitable measures which measures work for the given situation?
- Planning implementation taking action in practice
- Questions

What happened previously...

Why to take measures

Build resilience by taking measures that lead to

- Less damages
- Quicker recovery

Prioritizing locations

- Where is the situation unacceptable?
- Where does action need to be taken first?
 - Highest damages
 - Highest societal/ user impact
 - A combination of the two...

But also maybe also other factors:

- Which sectors does a failure impact
- Which parts of society (population)

Asset/ infrastructure owner

st?			Damage Category							
			C1	C2	C3	C4	C5			
Society	Losses Category	C1	1	1	2	2	3			
		C2	2	2	3	3	4			
		C3	3	3	3	4	4			
		C4	3	4	4	5	5			
		C5	4	4	5	5	5			

Societal losses - EAL

Note that how this matrix is filled can be adapted to user perspective.

Deltares

 \rightarrow Priority = very high!

Identification of measures

- Example: we know our road is prone to flooding
 - Peak of rain water run off is too high \rightarrow retain water in catchment area
 - Road is inundated \rightarrow change road location (higher ground)
 - Culvert capacity is insufficient \rightarrow increase culvert size
 - Road embankment is eroded \rightarrow increase robustness of protection
- To take relevant measures, you have to understand the problem e.g. "flooding"

All can be labeled 'flooding' but measures are totally different!

Identification of measures

- To take relevant measures, you have to understand the problem e.g. "flooding"
 - Bow ties may help understand how road is affected and which measures could help
- Keep Disaster Management Cycle in mind for various types of measures

Selecting suitable measures

- A measure costs money to implement and maintain (= costs)
- A measure reduces the impact (damages, losses, societal) (=benefits)
- Compare costs and benefits

- Semi Quantitative using criteria & classes = Multi Criteria Analysis (MCA)
- Quantitative = Cost Benefit Analysis (CBA)

Example of an MCA

- Make scoring location specific
- Rank measures based on performance

				Criteria for evaluating measures (1-5)						
	Culverts	bridges	no asset	effectiveness to increase safety	effectiveness to increase availability	Costs	benefits	physical robustness	flexibility	
Relative weighting of criteria	a			40%	23%	15%	8%	8%	5%	
Flooding/ prevention:		-								Ranking
manage hydraulic properties (dams, retention ponds, FP1vegetation) of catchment area	x	Х	Х	5	5	3	3	5	4	4,4
enhance/ build clear in-land drainage paths (i.e. preven FP2slow flow, meandering waterways)	t x	Х	Х	5	5	3	3	4	3	4,3
monitoring of drainage system and subsequent remova FP3of floating snow/ ice (links to FP2)	x	Х		5	5	3	1	1	5	4,0
FP5install dam to direct waterflow to culvert (links to FP2)		Х	Х	2	2	2	2	3	2	2,1
FP6resize drainage systems (culverts)			Х	5	5	4	1	4	2	4,3
FP7 resize drainage systems (bridges)		Х	Х							
FP8apply slope stability/ erosion protection		Х		4	4	3	1	5	5	3,7
FP9remove (potential) obstructions	x			2	2	2	2	1	5	2,1
Plan and execute maintenance before the flood season FP10(spring) – removing debris	x	Х		2	2	3	2	1	5	2,2
FP 11Elevate the road		Х	Х	4	4	1	2	4	1	3,2
build retaining pond next to road itself (within the FP12juristiction of the road operator)	x			4	4	2	2	5	4	3,6

Measure implementation

- Select measures that...
 - Perform best (MCA, CBA)
 - Fit within local practice e.g. type of measure, amount of maintenance, etc
 - Fall within authority of your organisation e.g. regional flood defences often do not fall within scope of road authority
- Plan measures in time (not all measures have to be taken NOW)
 - Try to implement measures naturally with regular work flow e.g.
- Maintenance
 - Yearly
 - Probably no regret to strengthen maintenance
- Reconstruction
 - 20 40 years
 - Adaptation during reconstruction more cost effective
- Construction
 - Location to have climate resilitent regulation and design standards

Conclusions

- Required input –
- Why to take measures-
- Prioritizing locations –
- Identification of measures -
- Selecting suitable measures –
- Planning implementation -

risk analysis results

- decrease amount of damage or duration of down time (or societal impact)
- locations with highest risk (also societal aspects?)
- understand situation (bow ties)

look at disaster risk cycle for full spectrum of measures

- does the effect outweigh the costs? MCA or Societal CBA does the measure fit with local situation
- ation not all measures need to be taken NOW; plan for future take measures in regular workflow as much as possible

Questions?