Deltares

Deltares

How to increase resilience of the road network in the Dominican Republic?

Margreet van Marle, Mike Woning

02/12/2021

Challenges in the Dominican Republic

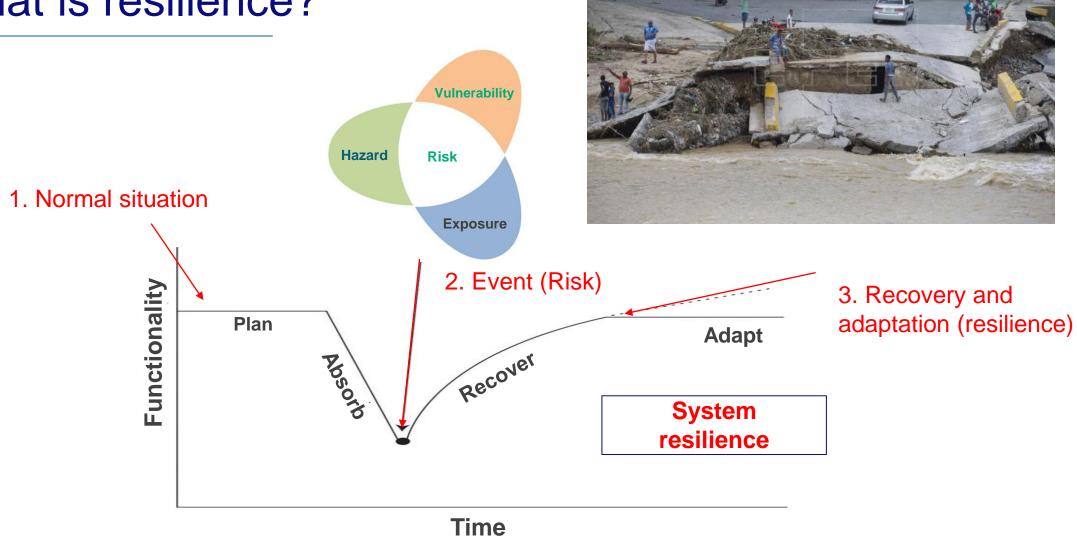
- The Dominican Republic is exposed to many natural hazards
 - Hydrometeorological hazards (tropical storms, floods)
 - Geophysical (earthquakes, tsunamis, landslides)
- Major uncertainties
 - Climate Change
 - Socio economic changes

Uncertainties

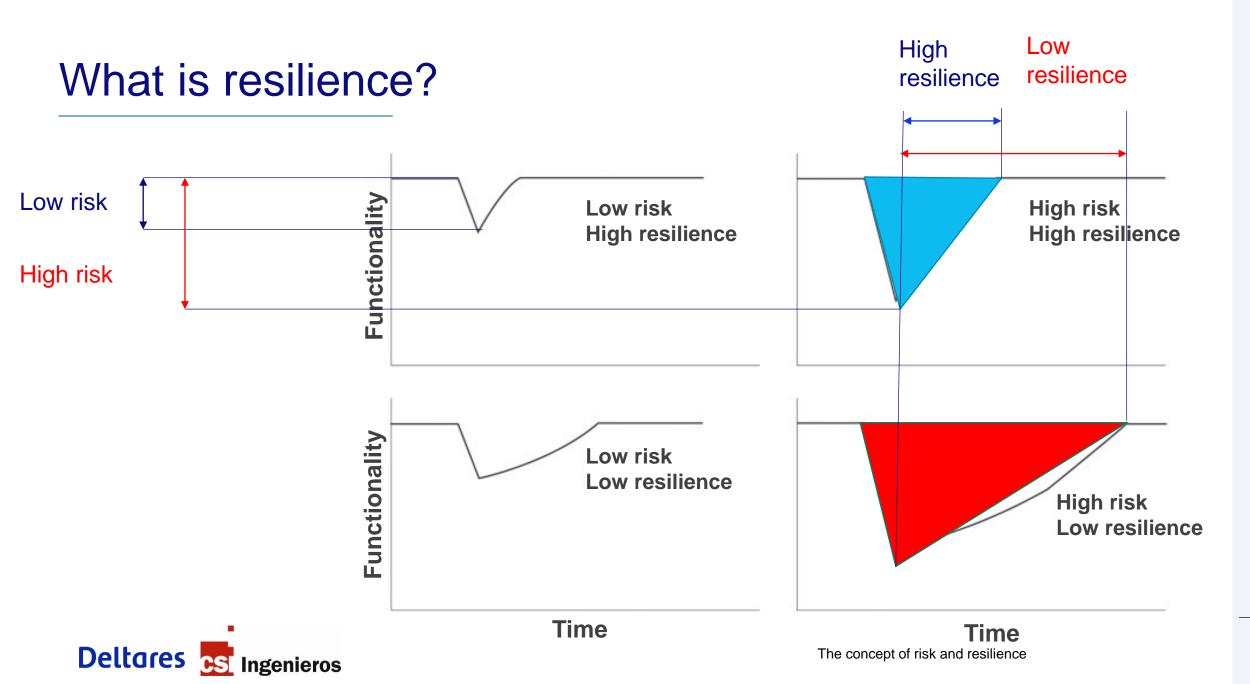
Goals of the project – Improve Resilience of the Road network

To support the government in:

- How to objectively prioritise the locations where natural hazards may affect the road network?
- What actions (measures) can be taken to **reduce the impact**?
- Make decisions taking into account an uncertain future (climate, economy).
- Efficient, effective and sustainable use of (limited) resources to build resilience of the road network against natural hazards.


Furthermore a 2-week training and implementation course based on hands-on excercises with goals:

- Apply the results of the project to potential real situations.
- Train the **decision-makers** and **technical experts** of the government of the Dominican Republic to be able to use the results.



What is resilience?

How to make decisions based on a risk-based approach?

The concrete goals for the analyses are:

- Conduct a risk analysis: determine where hazards may affect roads, how big the impact is, and what
 the probability is.
- Plan action: determine where to take action, what action to take and formulate an action plan.

Methodology

Inventory of all the assets in the network

Risk analysis for natural hazards

Analysis of network criticality

Prioritization of interventions

Viewer with the maps and Training of key personnel of the government

General methodology

Inventory of all the assets in the network Risk analysis for natural hazards

Analysis of network criticality

Prioritization of interventions

Invertory thorst the system - Bridges, tunnels, type - of payant infrastructure is at risk?

Resultshof welfid to defected by the Hazard? -> traffic modeling)

Quantity of vehicles per day on every road stretch

General methodology

Inventory of all the assets in the network

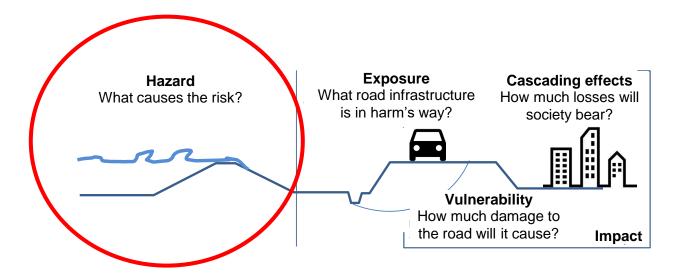
Risk analysis for natural hazards

Analysis of network criticality

Prioritization of interventions

Risk analysis for natural hazards

- Hazards
 - Collection of existing Hazard maps
- Analysis of exposure
 - Level of Hazard intensity per asset
- Vulnerability
 - Creation of vulnerability curves and the reparation costs

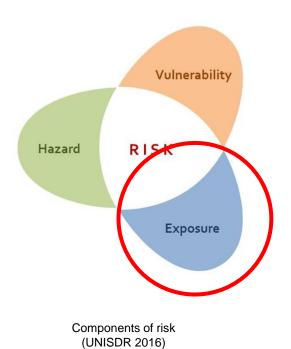


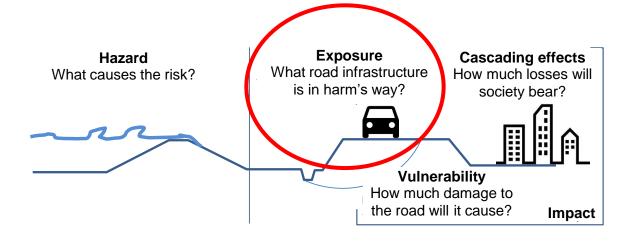
Risk = Hazard x Exposure x Vulnerability

Risk analysis

Components of risk (UNISDR 2016)

The context of risk analysis for road infrastructure (Bles et. al 2019)


Natural Hazards included

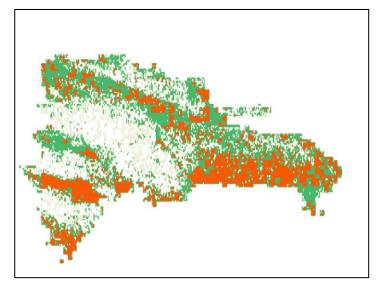

Natural hazards	Return period	Intensity of the hazard	
Inundación por Iluvia huracanada	1:50, 1:100, 1:500, 1:1000	Flood depth (m)	
Inundación	Varios	Flood depth (m)	
Landslides (Solely susceptibility)	No	Susceptibility (qualitative)	
Earth quakes (Susceptibility for liquefaction)	1:200, 1:475, 1:1000, 1:2500	PGA acceleration for different vibration period (gale = 0,01 m/s ²)	
Tsunami	1:50, 1:100, 1:475, 1:1000	Flood Depth (m)	

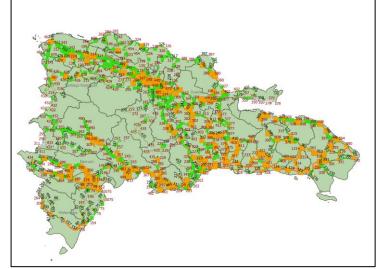
Risk analysis

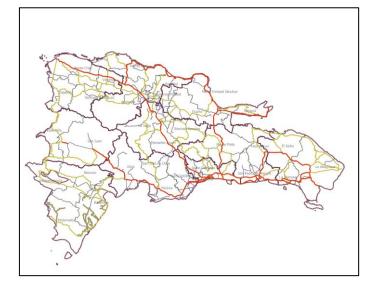
The context of risk analysis for road infrastructure (Bles et. al 2019)

Exposure analysis

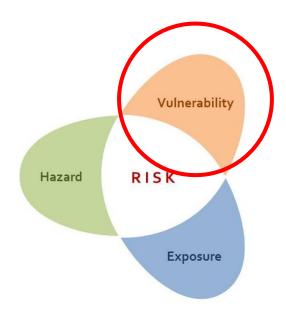
• Intersection of hazard scenario maps with road network asset maps.

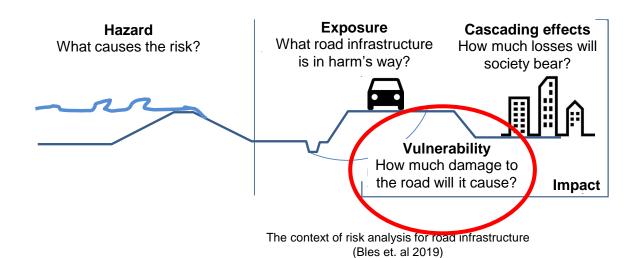





Exposure maps for every scenario and asset

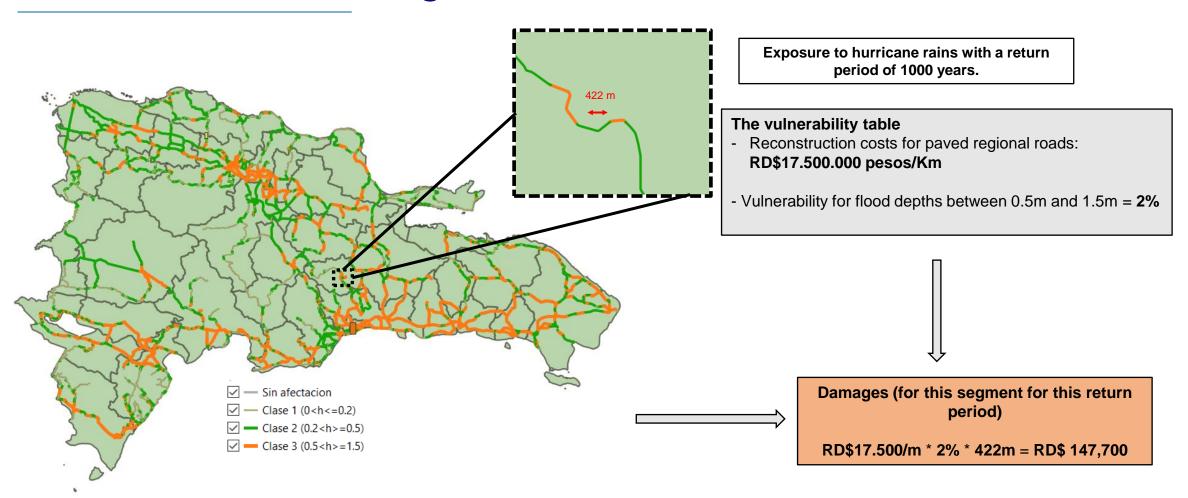
Road network
assets
(Road, Bridges, Tunnels,
Culverts)





Risk analysis

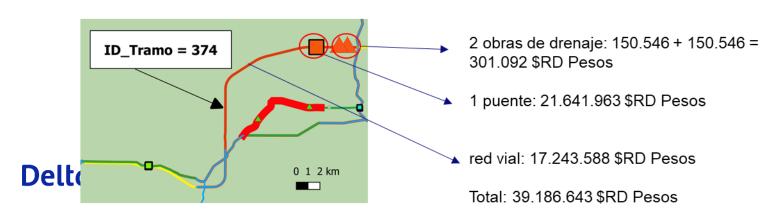
Components of risk (UNISDR 2016)



	Carreteras y Caminos					1											
	Costos de reparación como porcentaje de los costos promedios de reconstrucción,			Con asfalto Sin asfaltar			Tunel	Obra de	Puentes								
Vulnera	por nivel de amenaza, por tipo de activo		Troncal	Regional	Local	Caminos (1,5 veces daño)	Regional	Local	Caminos (1,5 veces daño)		drenaje						
		S			0 -	- 0,2	(m)	0,0%	0,0%	0,0%	0,0%	1,0%	1,0%	1,5%	1,0%	5%	3%
		Inundaciónes			0,2 -	- 0,5	(m)	1,0%	t	1,0%	1,5%	20,0%	20,0%	30,0%	3,0%	10%	5%
		dac	Profundidad d	de inundación		- 1,5	(m)	2,0%		2,0%	3,0%	50,0%	50,0%	75,0%	5,0%	20%	10%
		Inur				> 1,5	(m)	20,0%	20,0%	20,0%	30,0%	100,0%	100,0%	100,0%	20,0%	40%	20%
· \/ulparabili	4				0 -	- 200									0%	0%	0%
 Vulnerabili 						- 400	, ,	1							0%	5%	5%
			D/	~ A		- 600		ļ			V				10%	10%	10%
			PG	ıΑ		- 800 - 1000	,	ł			Х			ŀ	20% 45%	20% 35%	20%
le formo otio								ł						ŀ	60%	40%	35% 40%
 Informatio 						- 1400		i						ľ	75%	50%	50%
For ever				9 C O	0 -	- 92	(cm/s2)				0%						
		PGA+Potenci	DGA+Potencial	al d Sció svad	92 -	- 180	(cm/s2)				10%						
For ever	zas		Licuefacción	Licuefacción	enci efac / ele		- 340	, ,				25%					Х
	Amenazas		Lieuciucio	Potencial de liquefacción muy elevado	0.0	- 650					40%						
	Am	os				> 650			100%								
 Table with 		Terremotos		de ión	<u> </u>	- 92	(cm/s2)				0% 0%						
Table With		rrer	PGA+Potencial	cial acci <i>r</i> adc	122	- 180 - 340					10%					Х	
		Te	Licuefacción	Potencial de liquefacción elevado		- 650					25%					^	
				Po Di		> 650	, ,										
				0) C		- 92	(cm/s2)				0%						
			DCA - Datancial	al de sciór io	92 -	- 180		· / /									
			PGA+Potencial Licuefacción	efac efac nédi	180 -	- 340							Х				
		340 - 650 (cm/s2)		Potencial de liquefacción médio		340 - 650											
			A :=				(cm/s2)				25%						
				de ón	<u> </u>	- 92	, ,				0%						
			PGA+Potencial	cial o	92 -	- 180							V	ļ			
			Licuefacción	tenc uefa ba	180 - 340 -	- 340 - 650					0% 0%					Х	
Deltares			Potencial de liquefacción pajo			- 650 > 650					10%						17
	L	<u> </u>	-			/ 030	(0111, 32)	<u></u>	·		10/0	 					

Calculation of damages

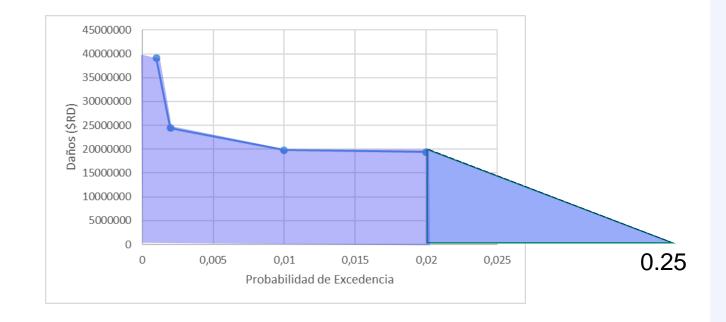
For each hazard scenario - resulted in 100 damage maps (4 hazards, for each return period, for each asset).


Calculation of annual expected damages (AED)

In order to have an overview of the possible annual investment to be made for each hazard, we have calculated the AEDs.

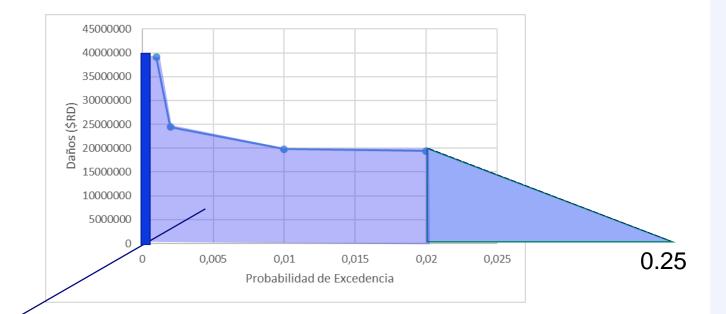
- 1) Damage is calculated, per road stretch (sum of bridges, culverts, tunnels and road network), for all hazard scenarios.
- 2) DAE is calculated per hazard per road stretch

Ejemplo: Inundación por Iluvias huracanadas – Daños por tramo (suma de activos), por escenario de amenaza


1:1000 años

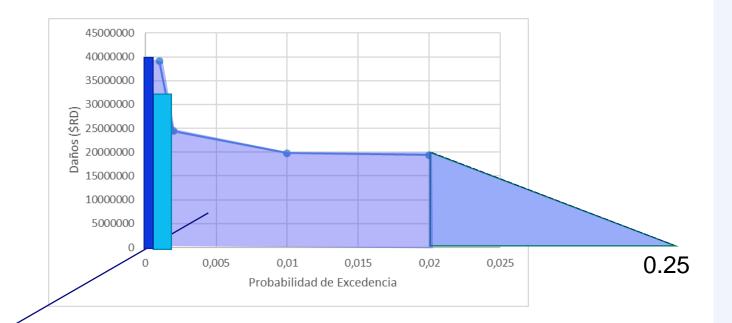
Inundation for hurricane rains Road stretch 374							
Return Probability Damages of (\$RD (years) exceedance Pesos)							
50	0.02	19.415.937					
100	0.01	19.770.706					
500	500 0.002 24.422.428						
1000	1000 0.001 39.186.643						

Example: Flooding due to hurricane rains – Annual Expected Damages per road stretch


Inundation for hurricane rains Road stretch 374							
Return period (years)	period Probability of Damages						
50	0.02	19.415.937					
100	19.770.706						
500	500 0.002 24.422.428						
1000	0.001	39.186.643					

Example: Flooding due to hurricane rains – Annual Expected Damages per road stretch

Inundation for hurricane rains Road stretch 374							
Return period (years)	period Probability of Damages (CPD Pages)						
50							
100							
500							
1000	0.001	39.186.643					


Area = AED =

= 0.001 *39.186.643 +

Example: Flooding due to hurricane rains – Annual Expected Damages per road stretch

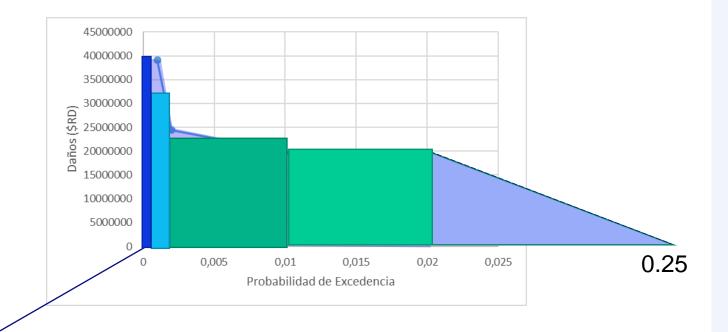
Inundation for hurricane rains Road stretch 374							
Return period (years)	period Probability of Damages						
50							
100							
500	0.002	24.422.428					
1000	0.001	39.186.643					

Área = EAD =

= 0.001 *39.186.643 + (0.002-0.001) * ((39.186.643 + 24.422.428)/2)

Example: Flooding due to hurricane rains – Annual Expected Damages per road stretch

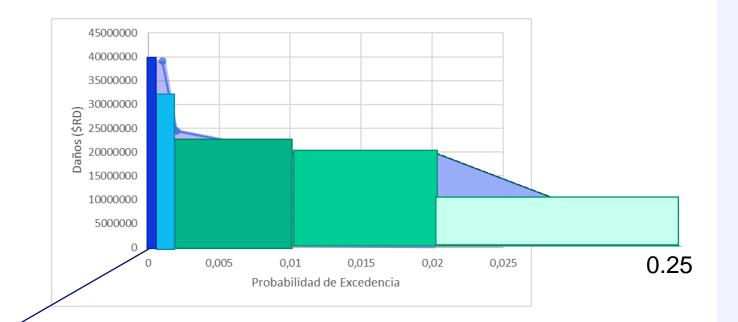
Inundation for hurricane rains Road stretch 374							
Return period (years)	period Probability of Damages (CDD Damages)						
50							
100	0.01	19.770.706					
500	0.002	24.422.428					
1000	0.001	39.186.643					


Área = EAD =

= 0.001 *39.186.643 + (0.002-0.001) * ((39.186.643 + 24.422.428)/2) + (0.01-0.002) * ((24.422.428 +19.770.706)/2)

Example: Flooding due to hurricane rains – Annual Expected Damages per road stretch

Inundation for hurricane rains Road stretch 374								
Return period (years)	period Probability of Damages (CPD Pages)							
50	0.02	19.415.937						
100	100 0.01							
500	0.002 24.422.428							
1000	0.001	39.186.643						


Área = EAD = 2.676.529 \$RD/año

= 0.001 *39.186.643 + (0.002-0.001) * ((39.186.643 + 24.422.428)/2) + (0.01-0.002) * ((24.422.428 +19.770.706)/2) + (0.02-0.01)*((19.770.706 + 19.415.937 /2)

Example: Flooding due to hurricane rains – Annual Expected Damages per road stretch

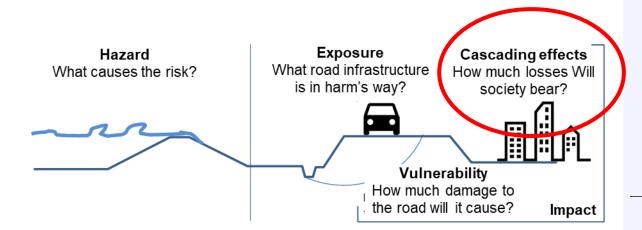
Inundation for hurricane rains Road stretch 374							
Return period (years)	period Probability of Damages (*PD Posse)						
50	0.02	19.415.937					
100	19.770.706						
500	500 0.002 24.422.4						
1000	0.001	39.186.643					

Área = EAD = 2.676.529 \$RD/año

= 0.001 *39.186.643 + (0.002-0.001) * ((39.186.643 + 24.422.428)/2) + (0.01-0.002) * ((24.422.428 +19.770.706)/2) + (0.02-0.01)*((19.770.706 + 19.415.937 /2) + (0.25 - 0.02)*((19.415.937 + 0 /2)

General methodology

Inventory of all the assets in the network

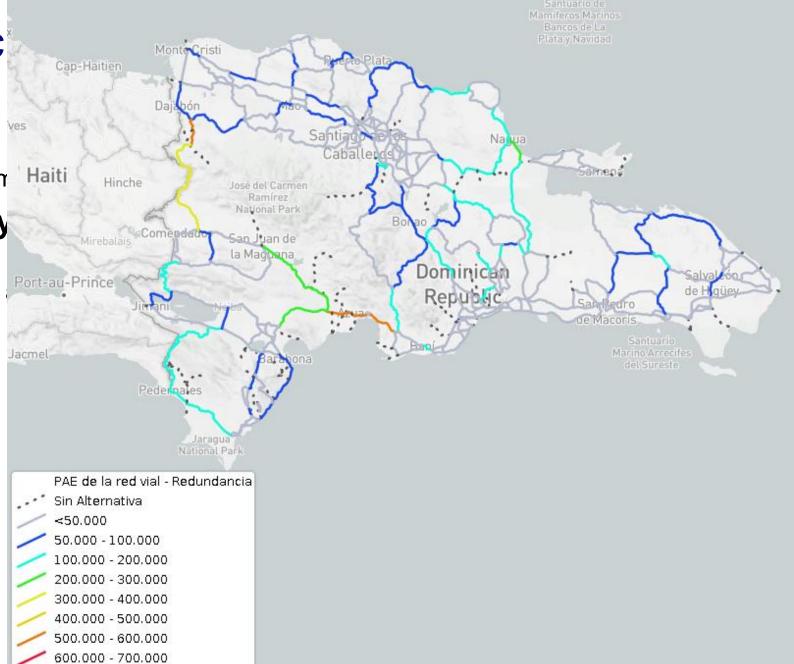

Risk analysis for natural hazards

Analysis of network criticality

Prioritization of interventions

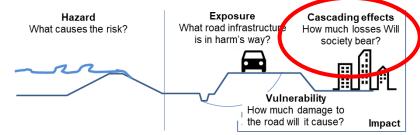
Criticality analysis

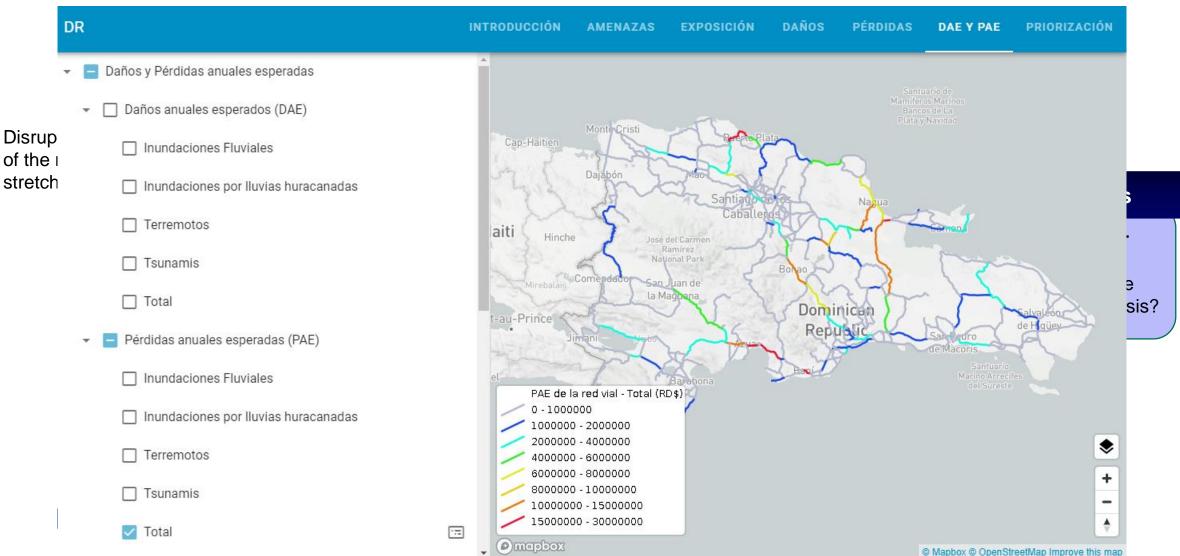
- Quantification of criticality
 - Analysis of disruption of each road stretch
- Calculate the economic impact
 - Economic impact resulting from each type of Hazard, per road stretch


Quantification of c

What is criticality?

Criticality is the measure of the in


How to evaluate criticality


 Criticality is assessed through an time is removed and the distance

Criticidad del Sistema y pérdidas económicas

Todos las mapas disponibles - Demonstración de la herramienta

Inventory of all the assets in the network

Risk analysis for natural hazards

Analysis of network criticality

Prioritization of interventions

Inventory of the system

Bridges, tunnels, type of pavement

Results of traffic model

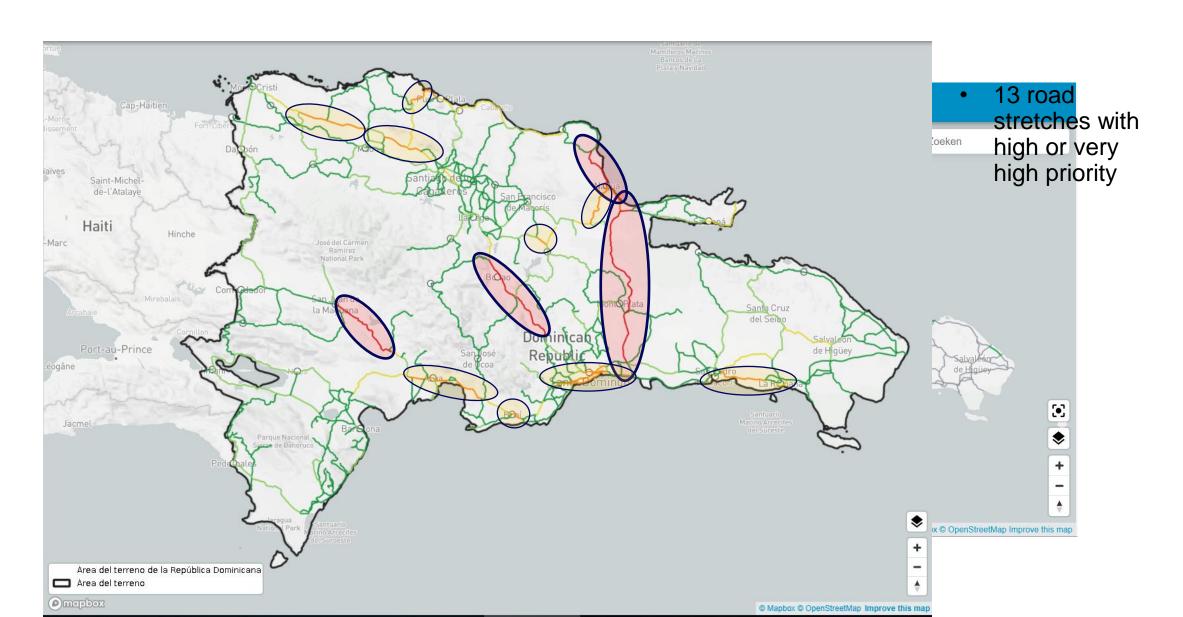
 Number of vehicles per day on every road stretch Hazard maps, exposure maps and damage maps

- Per asset
 – bridge,
 culvert, tunnel, road
- Per hazard –

 (landslides), fluvial floods, hurricane floods, earthquakes, tsunamis)

 Vulnerability curves

Maps with


- Redundancy (Extra distance [km])
- Losses per road stretch per day (\$RD/Day/Stretch)

Maps of

Prioritization – per hazard

Prioritization

How to use? Results for asset management

Exposure maps with different return periods

Maps with AED and AEL

Priority maps

Which road sections
have the most
damage? costs for the
road owner

Which road sections have the highest losses? Effects on society

Which road sections need the most attention for rehabilitation/improvement, taking into account damage and losses?

How to use? Results for emergency management

Exposure maps with different return periods

Maps with Annual Expected Losses

Maps with Annual Expected Damages

Which road sections are most critical for use and need the most attention, during preparation and response?

What is the first estimate of the budget that may be needed for reconstruction?

Contact

www.deltares.nl

@deltares

in linkedin.com/company/deltares

info@deltares.nl

@deltares

f facebook.com/deltaresNL

