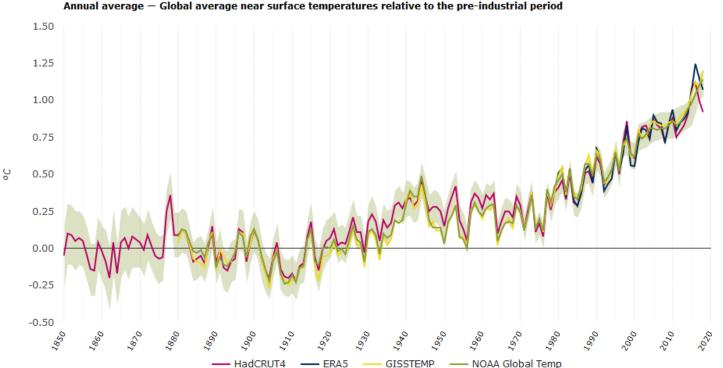


Overview of the ClimaProof results: Climate change projections for Western Balkan – challenges for road infrastructure development

AUSTRIAN DEVELOPMENT COOPERATION

Climate and Climate Change in the Western Balkan region

- ClimaProof Dataset and Tools
- Climate indicators: Theory and Examples


Climate and Climate Change in the Western Balkan region

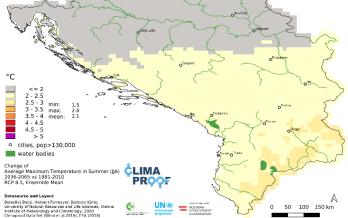
Global Temperature Change

Data sources:

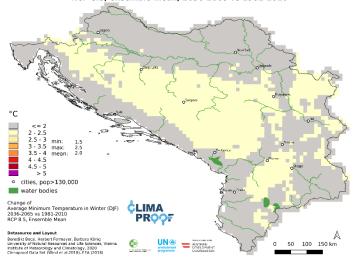
- н. Global Surface Temperature Anomalies and Annual Global (land and ocean combined) Anomalies (degrees C) provided by National Oceanic and Atmospheric Administration (NOAA)
- Annual Global (Land and Ocean) temperature anomalies HadCRUT (degrees Celsius) provided by
- NASA Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP) provided by NASA .
- ERA-Interim provided by European Centre for Medium-Range Weather Forecasts (ECMWF)

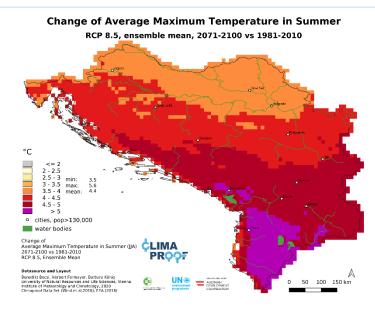
EEA, 2020

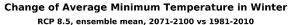
WITH FUNDING FROM

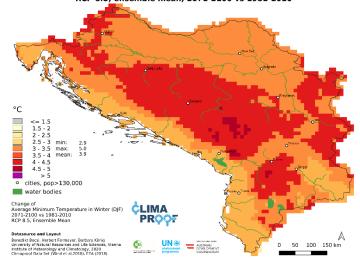


https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperatu

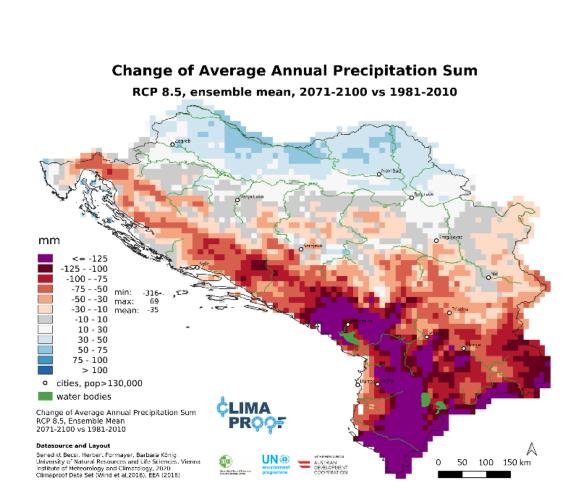


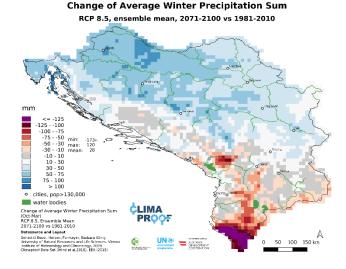

Change of Average Temperature (Tmax JJA, Tmin DJF)

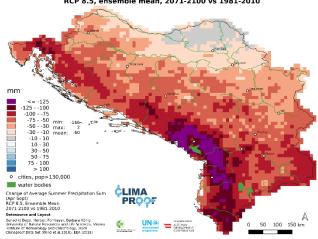

Change of Average Maximum Temperature in Summer RCP 8.5, ensemble mean, 2036-2065 vs 1981-2010



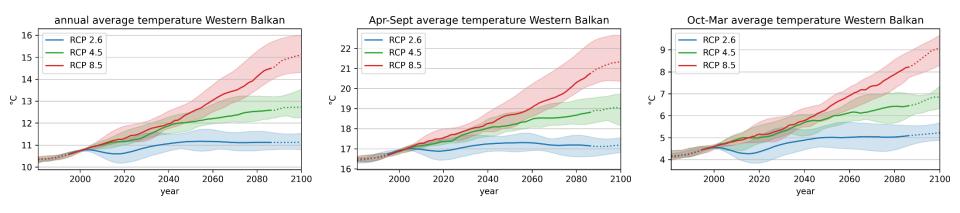
Change of Average Minimum Temperature in Winter RCP 8.5, ensemble mean, 2036-2065 vs 1981-2010

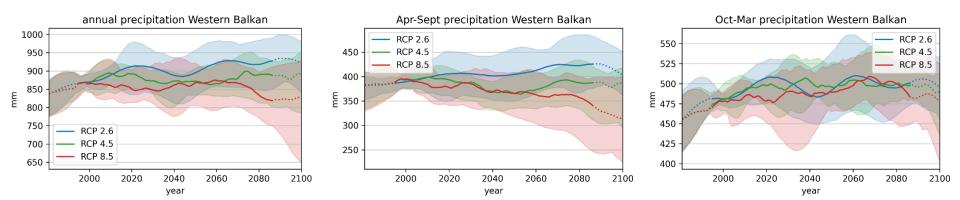






Change of Precipitation





Change of Average Summer Precipitation Sum RCP 8.5, ensemble mean, 2071-2100 vs 1981-2010

Temperature and precipitation change WB

AUSTRIAN DEVELOPMENT COOPERATION

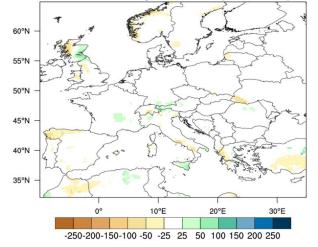
ClimaProof Dataset and Tools

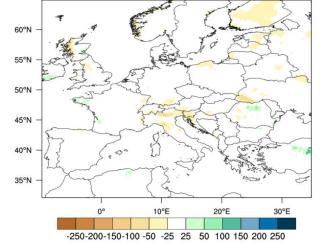
- Euro-Cordex¹ (40) and Med-Cordex² (4), Resolution 0.11°
- Fully-coupled model by the University of Belgrade, Resolution 0.44°
- 6 GCMs, 13 RCMs
- RCP2.6 (6), RCP4.5 (18), RCP8.5 (16)

¹ https://euro-cordex.net ² https://www.medcordex.eu/

Data base – Observational data

Dataset	Variables used within the Project	Horizontal Resolution	Expansion of original dataset	Download
Carpatclim (Szalai et al, 2013; European Commission JRC, 2013)	tasmax, tasmin, pr, rsds, sfcWind, hurs	0.1°	44°N - 50°N, 17°E - 27°E	http://www.carpatclim-eu.org/
Danubeclim (Szalai et al, 2013; European Commission JRC, 2015)	pr	0.1°	Serbia, Montenegro and Srpska Republic	<u>http://www.carpatclim-</u> <u>eu.org/danubeclim</u>
E-OBS (Haylock et al, 2008; ECA&D, 2018)	tasmax, tasmin	0.25°	25°N -75°N 40°W- 75°E	https://www.ecad.eu/downloa d/ensembles/download.php
CHIRPS (Funk et al, 2015)	pr	0.05°	50°N - 50°S, 180°W - 180°E	http://chg.ucsb.edu/data/chirp s/
ERA5 (C3S, 2017)	sfcWind (calc. from u and v), hurs (calc. from mean temperature and dew point temperature)	0.28°	global	https://cds.climate.copernicus .eu/cdsapp#!/home
SARAH-2 (Pfeifroth et al, 2017)	rsds	0.05°	65°N - 65°S, 65°W - 65°E	https://doi.org/10.5676/EUM_ SAF_CM/SARAH/V002

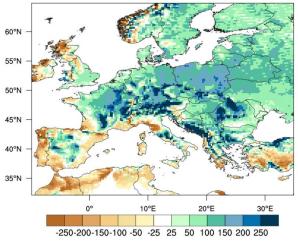




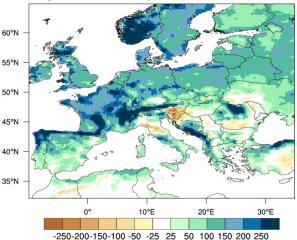
Ensemble of bias-corrected Climate Scenarios Scaled-Distribution Mapping

CNRM-ARPEGE Winter Precip 1960-91 Bias (Model-EOBS) Bias Corr.

CNRM-ARPEGE Summer Precip Bias (Model-EOBS) 1960-91 Bias Corr.


Precipitationbias in RCMs

Left: bias corrected


Right: raw data

(up: ALADIN down: RegCM3)

CNRM-ARPEGE Winter Precip 1960-91 Bias (Model-EOBS) Raw

ICTP-RegCM3 Summer Precip Bias (Model-EOBS) 1960-91 Raw

CCCA Dataserver

https://data.ccca.ac.at/group/climaproof (Account required)

Available data:

- Bias corrected model data
- Regridded original model data (for the ICC-OBS Tool)
- Observational data (used for bias correction)
- Topography data of the common grid (0.1°)
- High resolution topography data (0.01°) for downscaling

Variable	Unit	
tasmax	°C	
tasmin	°C	
pr	mm	
rsds	W/m²	
sfcWind	m/s	
hurs	%	

User Guide: https://github.com/boku-met/climaproof-docs

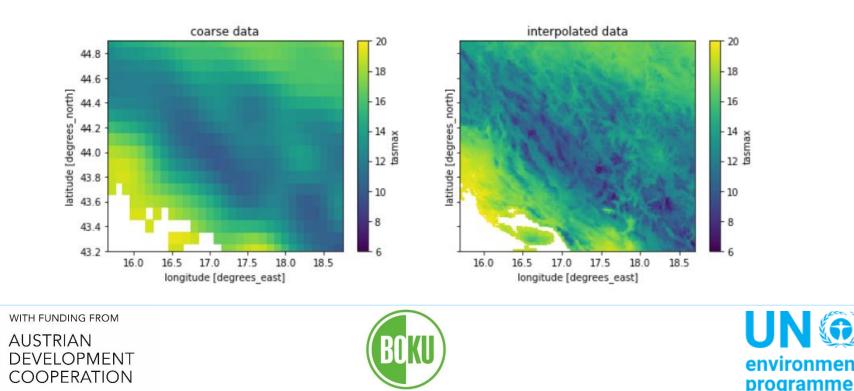


Model Selection Tool

https://github.com/boku-met/climaproof-tools

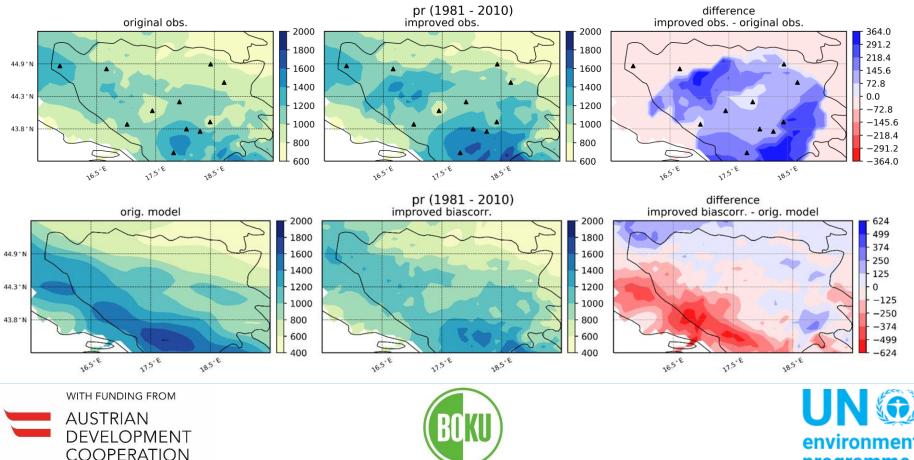
WITH FUNDING FROM AUSTRIAN DEVELOPMENT

COOPERATION



Downscaling Tool

https://github.com/boku-met/climaproof-tools


- For applications that need a higher horizontal resolution
- Easy-to-use tool to downscale model and observational data from default (0.1°) to high resolution (0.01°)

ICC-OBS tool https://github.com/boku-met/ICC-OBS

Improving bias-corrected Climate Change scenarios with local **OBS**ervational data

- Observational Data of 11 Stations for the period 1981-2010
- Interpolation with idw (min. 3 neighbours, 100km radius)

programme

Upcoming: New global observational dataset

Dataset	Variables	Horizontal Resolution	Expansion of dataset	Download
CHELSA	tasmax, tasmin, tas, pr	1-arc-second (0.00833°)	global	https://chelsa- climate.org/downloads/
			Avail	able in 2022!

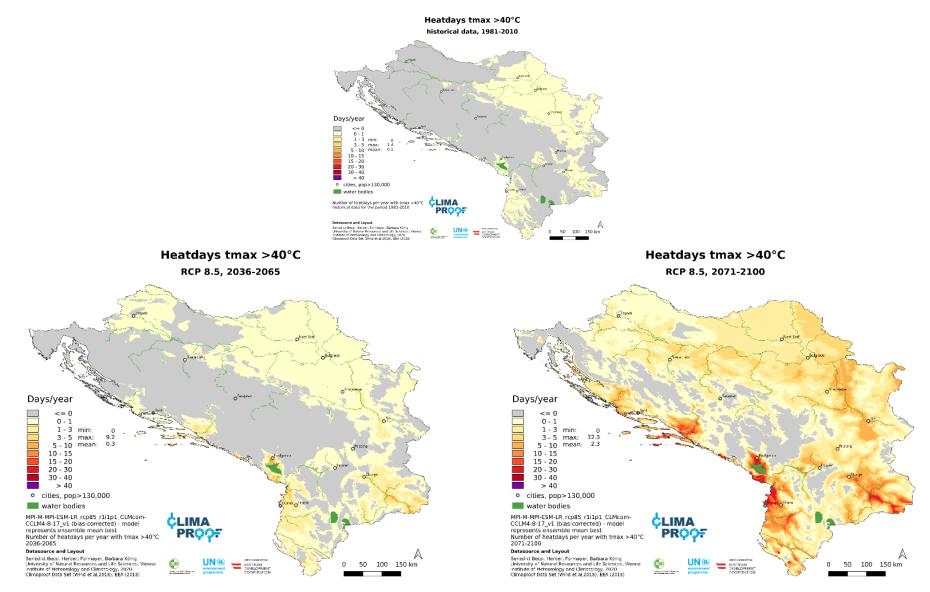
AUSTRIAN DEVELOPMENT COOPERATION

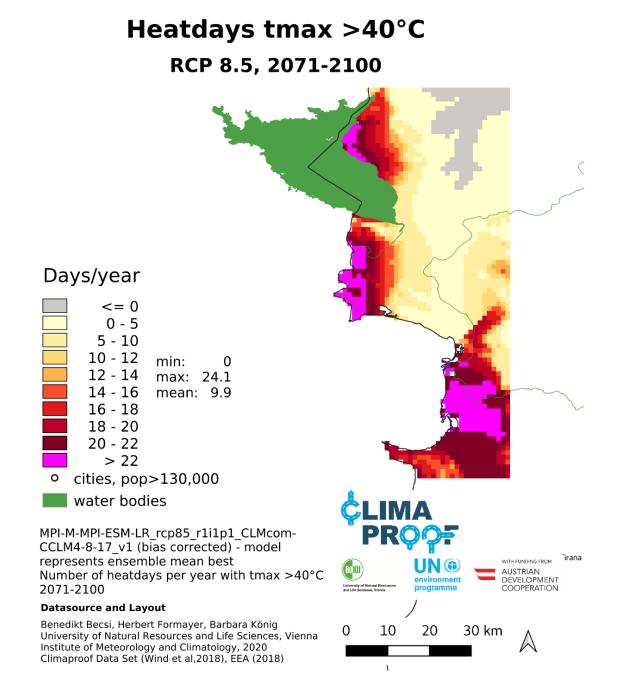
Climate indicators

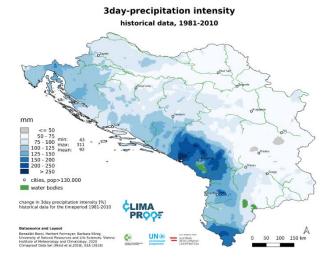
Climate indicators

- Climate indicators can increase the relevance of climate data for certain applications
- Expert/practitioner knowledge required
- Impact chains connect specific effects with climate parameters

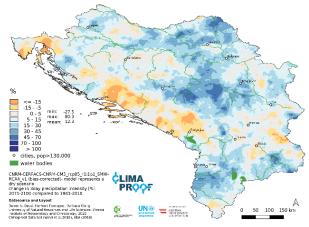
Climate indicators

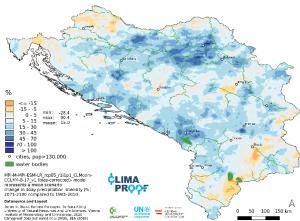

Climate Event	Climate Parameter	Indicator / Unit	Effects on infrastructure
Extreme Rainfall events (local or regional)	Pr	maximum precipitation intensity/day or per several days	Flooding of road surface Erosion of road embankments Weakening of the road embankments and road foundation due to standing water Landslides and mudflows Loss of road structure integrity
			Overloading of drainage systems Damage to energy supply and communication Traffic hindrance and safety (aquaplaning)
Seasonal or annual rainfall (sum)	Pr	mm/3month, mm/season, mm/year	Structural integrity of roads, bridges and tunnels (soil moisture levels) Damage of the road base due to standing water Risk of floods, landslides and slope failures (if change in precipitation pattern)
Max Temperature/ Heatdays	Temp.	Average max T in 24h Max Temp	Pavement integrity (Rutting, cracking and blow-ups of asphalt; migration of liquid bitumen) Thermal expansion in bridge expansion joints and pavements
Drought	Temp & Pr	Drought duration: Number of consecutive dry days and days/year	Increased risk of wildfires threatening transport infrastructure Threats from areas deforested by wildfires (decreased soil integrity) Increased generation of smog
Thaw/ Frost-Thaw Cycle	Temp	Number of days with 0°C crossing	Cracking due to weakening of the road base Increased demand for reconstruction Increases risk of stone chipping
Extreme wind speed (storm surge, worst gales and wind gusts) WITH EUNDING FROM	Wind	max. speed km/h; m/s	Threat to stability of bridges Damage to signs, lightings etc Trees, windmill, noise barriers and trucks falling on the road Reduced vehicle control





Example 1: Heatdays with tmax >40°C (model closest to RCP8.5 ensemble mean)




Example 2: 3-day extreme precipitation different scenarios: 8.5 (dry, mean, wet)

3day-precipitation intensity RCP 8.5, 2071-2100 compared to 1981-2010 (change in %)

3day-precipitation intensity RCP 8.5, 2071-2100 compared to 1981-2010 (change in %)

3day-precipitation intensity RCP 8.5, 2071-2100 compared to 1981-2010 (change in %)

Combination of indicators

Climate indicators

• Heatdays and Dry spell (concecutive dry days) – risk of forest fire

Climate indicators and topography

- Heavy Precipitation and topography risk of landslides
- Climate indicators and socioeconomic data
 - Heat and age of population risk for elderly people

Questions

Remarks

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment Institute of Meteorology and Climatology

DI Benedikt Becsi

Gregor-Mendel-Str. 33

1180 Vienna, Austria

Tel.: +43 1 476 54 - 81416

benedikt.becsi@boku.ac.at

https://boku.ac.at/en/wau/met/forschungsthemen/klima-und-klimafolgen

AUSTRIAN DEVELOPMENT COOPERATION

