

60

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

WITH FUNDING FROM

AUSTRIAN DEVELOPMENT COOPERATION

The foundation of bias correction

Observational Datasets

National Workshops

June 2019

Maria Wind, Kristofer Hasel

Why are good observations important?

Garbage in → garbage out

- Bias correction algorithms are based on observations
- Model data is modified so that its statistical properties become the same as observations
- Bias correction of climate models with bad observations will not improve the data – results can be even worse
- Bias correction only makes sense when observations are better than the model

Observational Datasets

Overview of **best freely available gridded observational datasets** used within the Climaproof project:

- E-OBS
 - Temperature (max, min), Precipitation
- CHIRPS
 - Precipitation
- SARAH-2
 - Global Radiation
- Carpatclim / Danubeclim
 - Temperature, Precipitation, Radiation, Wind, Humidity,...
- ERA5 Reanalysis
 - Wind, Humidity, Temperature, Precipitation, Radiation,...

E-OBS (Heylock et al., 2018)

- Based on the European Climate Assessment and Data (ECA&D) and data provided by National Meteorological and Hydrological Services
- Freely available gridded dataset for
 - Temperature: minimum, maximum, mean
 - Precipitation amount
 - Sea level pressure
- Daily data for the period 1950 2017
- Resolution: 0.25° x 0.25°
- Expansion:
 - Lat. 25°N -75°N
 - Lon. 40°W-75°E
- Updated regularly
 - Version 17 used within Project download via https://www.ecad.eu/download/ ensembles/download.php
- Quality is limited by the number of station data provided by each country

E-OBS (Heylock et al., 2018)

CHIRPS (Funk et al., 2015)

CHIRPS = Climate Hazards Group InfraRed Precipitation with Station data

- Incorporates 0.05° resolution satellite imagery with in-situ station data to create gridded rainfall time series
- Daily data from 1981 near present
- Resolution: 0.05° x 0.05°
- Expansion:
 - Lat. 50°N 50°S
 - Lon. 180°W 180°E

Comparison E-OBS & CHIRPS

CHIRPS Original Dataset (0.05° resolution) Mean Annual Precipitation 1981-2010 [mm]

E-OBS Original Dataset (0.25° resolution) Mean Annual Precipitation 1981-2010 [mm]

SARAH-2

SARAH-2 = Surface Solar Radiation Data Set – Heliosat – Edition 2

- geostationary Meteosat satellites
- Satellite-based climate data record of:
 - solar surface irradiance,
 - surface direct irradiance (direct horizontal and direct normalized),
 - sunshine duration,
 - spectral information, and
 - effective cloud albedo
- Monthly and daily means and 30-min instantaneous data
- Time period: 1983 2015
- Expansion: lat $\pm 65^{\circ}$; lon $\pm 65^{\circ}$
- Resolution: 0.05° grid

ERA5 (ECMWF, 2016)

5th generation of ECMWF atmospheric reanalysis

- Reanalysis combines model data with observations into a complete and consistent dataset using the laws of physics (data assimilation)
- ERA5 will replace the ERA-Interim reanalysis

- Covers the period from 1979 near present
- Hourly data
- Resolution: 0.28° x 0.28°
- Expansion: global

Common Grid

- 0.1° x 0.1° resolution
- Projection: WSG 1984
- Created from NOAA GLOBE Digital Elevation Model (30arc-seconds resolution) by selecting every 12th grid point
 - Points from CARPATCLIM domain overwritten with height of dataset
- Same grid type used in CARPATCLIM → no interpolation of these datasets needed

Getting Final Observations

Regridding to common grid

- Method based on the Earth System Modelling Framework (ESMF) software ESMF_RegridWeightGen (implemented in NCL)
 - Can handle different kinds of grid projections
- Patch-method: ESMF version of a technique called "patch recovery" commonly used in finite element modelling
 - Better results than inverse distance interpolation

Merging datasets

- Temperature: Carpatclim & E-OBS
- Precipitation: Danubeclim & CHIRPS
- Radiation: Carpatclim & SARAH
- Wind: Carpatclim & ERA-5
- Humidity: Carpatclim & ERA-5

Final Datasets: Precipitation

Merged CHIRPS and DANUBECLIM data

Final Datasets: Maximum Temperature

Merged E-OBS and CARPATCLIM data

Final Datasets: Minimum Temperature

Merged E-OBS and CARPATCLIM data

Merged SARAH and CARPATCLIM data

Merged ERA5 and CARPATCLIM data

Final Datasets: Wind Speed

Merged ERA5 and CARPATCLIM data

References

CARPATCLIM (s.a.) CARPATCLIM - About . [Online]. s.a. Available from: http://www.carpatclimeu.org/pages/about/ [Accessed: 20 February 2018].

Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store (CDS), Accessed 8 March 2019. https://cds.climate.copernicus.eu/cdsapp#!/home

ECA&D (2018) E-OBS gridded dataset - download . [Online]. 2018. Available from: https://www.ecad.eu/download/ensembles/download.php [Accessed: 20 April 2018].

European Commission - JRC (2013) CARPARTCLIM Database. [Online]. Available from: http://www.carpatclim-eu.org.

European Commission - JRC (2015) DANUBECLIM Database . [Online]. Available from: http://www.carpatclim-eu.org/danubeclim/.

Funk, Chris, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell & Joel Michaelsen. "The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes". Scientific Data 2, 150066. doi:10.1038/sdata.2015.66 2015.

Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., et al. (2008) A European daily highresolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research.[Online] 113 (D20119). Available from: doi:doi:10.1029/2008JD010201.

Pfeifroth, U., Kothe, S., Müller, R., Trentmann, J., et al. (2017) Surface Radiation Data Set -Heliosat (SARAH) - Edition 2 . [Online]. Available from: doi:10.5676/EUM_SAF_CM/SARAH/V002.

